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ABSTRACT 

Deep learning, a transformative force in computational biology, has reshaped biological data analysis and 

interpretation terrain. This review delves into the multifaceted role of deep knowledge in this field, exploring its 

historical roots, inherent advantages, and persistent challenges. It investigates explicitly its application in two pivotal 

domains: DNA sequence classification, where it has been used to identify disease-causing mutations, and protein 

structure prediction from sequence data, where it has enabled the accurate determination of protein tertiary structures. 

Moreover, it offers a glimpse into the future trajectory of this dynamic field, sparking intrigue and excitement about 

the potential of deep learning. 

Deep learning, a powerful tool in computational biology, can be traced back to the inception of 'threshold logic,' a 

fusion of algorithmic principles and mathematical frameworks devised to mimic cognitive processes. This seminal 

breakthrough, which introduced the concept of a threshold function that could be used to model complex decision-

making processes, paved the way for deep learning to decipher intricate patterns embedded within vast biological 

datasets. Deep learning presents many benefits, including precise disease diagnosis, novel drug discovery, and 

personalized medicine facilitation. Its prowess lies in handling vast, intricate datasets while enhancing generalization 

capabilities, a testament to its evolution and development that we can appreciate. 

INTRODUCTION 

Role of Deep Learning in Computational Biology 

The intersection of advanced computing techniques and biological research has propelled the field of computational 

biology forward, allowing for deeper insights into the complexities of living systems. This synthesis necessitates 

applying data analysis, theoretical frameworks, mathematical modelling, and computational simulations to explore 

phenomena ranging from behaviour and social interaction to intricate biological processes (1). 

The genesis of machine learning in this domain can be traced back to the 1990s when neural network applications 

were first employed to analyze gene expression data. However, significant strides were made with the advent of deep 

learning algorithms, particularly artificial neural networks like convolutional (CNNs) and recurrent (RNNs) networks, 

designed to discern intricate patterns within complex datasets and furnish reliable predictions (2). 

A monumental breakthrough in this field was the inception of the DeepBind algorithm in 2015 by researchers from 

Harvard and MIT. This cutting-edge neural network model, DeepBind, was able to uncover RNA-binding protein 

binding sites, revealing previously undiscovered regulatory elements within the genome (3). This heralded a new era, 

where deep learning has emerged as an indispensable tool for addressing a wide array of biological challenges, from 

predicting protein structures to identifying disease-associated genetic mutations (2). 

AlphaFold, a product of DeepMind's expertise, is a prime example of the practical applications of deep learning in 

computational biology. This advanced neural network provides remarkably accurate insights into protein structures, 

thereby pushing the boundaries of structural biology. The use of deep learning in computational biology has yielded 

significant breakthroughs across diverse domains such as genomics, medical diagnostics, and drug discovery. 

 
1 How to cite the article: Palakurti N.R (May 2024); Computational Biology and Chemistry with AI and ML;  International Journal of Research 
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This technological advancement has proven to be a game-changer in the field of genomic data analysis. It enables the 

precise detection of disease-causing genetic defects, paving the way for the development of personalized treatments. 

Furthermore, deep learning aids in predicting functional pathways for newly discovered drugs, streamlining the 

process of target identification and significantly reducing the need for extensive trial-and-error experimentation. 

Deep learning excels in analyzing vast and intricate datasets, detecting subtle patterns that conventional statistical 

methods may overlook, thus enabling a deeper understanding of biological systems. Market projections indicate a 

substantial growth trajectory, with the global market for deep learning in life sciences projected to reach USD 34.83 

billion by 2021, driven by the pursuit of personalized medicine and the imperative to enhance drug discovery 

efficiency (4). 

Admittedly, deep learning in computational biology is not without its challenges. The requirement for a substantial 

amount of training data for optimal accuracy and the intricacy of interpreting results that may deviate from traditional 

biological models are significant obstacles. However, these challenges are not insurmountable, and they only serve to 

underscore the potential for further innovation and advancement in this field. 

Despite the challenges, the potential of deep learning to revolutionize computational biology and improve healthcare 

outcomes is undeniable. This article delves into the applications of deep learning in computational biology, explores 

associated challenges and prospects, and highlights notable developments that are shaping the future of personalized 

medicine and drug discovery. 

A Concise History and Evolution of Deep Learning 

The term "deep learning" was introduced to the machine learning realm by Rina Dechter in 1986 and to artificial 

neural networks by Igor Aizenberg and colleagues in 2000, focusing on Boolean threshold neurons (5). The roots of 

deep learning trace back to 1943 when Walter Pitts and Warren McCulloch, with their unwavering determination, 

devised a computer model inspired by human brain neural networks, pioneering "threshold logic" to simulate 

cognitive processes. Despite occasional setbacks during the Artificial Intelligence Winters (5), as depicted in Table 1, 

Warren McCulloch and Walter Pitts laid the foundation for neural networks with threshold logic, utilizing 

mathematical principles and algorithms (6). In 1958, Frank Rosenblatt introduced the perceptron, a two-layer neural 

network for pattern recognition, also proposing additional layers, practically implemented in 1975. 

Table 1 An evolutionary and historical overview of deep learning is shown in the table. 

1873  A. Bain  The earliest models of neural 

networks, called Neural Groupings, 

were introduced and were inspired 

by the Hebbian Learning Rule.  

1943  McCulloch & Pitts  The MCP Model was introduced, 

which is considered the precursor to 

Artificial Neural Models.  

1949  D. Hebb  Considered as the father of neural 

networks, he introduced the 

Hebbian Learning Rule, which 

formed the basis for modern neural 

networks.  

1958  F. Rosenblatt  The first perceptron, which closely 

resembles modern perceptrons, was 

introduced.  

1969  Minsky and Papert  Publish Perceptrons, which 

criticizes the perceptron and limits 

the potential of neural networks  

1974  P. Werbos  Introduced Backpropagation  

1980  T. Kohonen  

K. Fukushima  

Introduced Self Organizing Map  

Neocogitron was introduced, which 

served as inspiration for 

Convolutional Neural Networks.  

1982  J. Hopheld  The Hopfield Network was 

introduced  

1985  Hilton & Sejnowski  The Hopfield Network was 

introduced  
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1986  P.Smolensky  

M. I. Jordan  

Introduced Harmonium, which is 

later known as Restricted 

Boltzmann Machine  

Defined and introduced Recurrent 

Neural Network  

1990  Y. LeCun  LeNet was introduced, 

demonstrating the practical 

potential of deep neural networks.  

1997  Schuster & Paliwal  

Hochreiter&  

Schmidhuber  

Introduced Bidirectional Recurrent 

Neural Network  

Introduced LS'TM, solved the 

problem of vanishing  

gradient in recurrent neural 

networks  

2006  G. Hinton  Deep Belief Networks were 

introduced, along with the layer-

wise pretraining technique, which 

marked the beginning of the current 

deep learning era.  

2009  Salakhutdinov&  

Hinton  

Deep Boltzmann Machines were 

introduced.  

2012  G. Hinton  Dropout, an efficient method for 

training neural networks, was 

introduced.  

2012  Alex Krizhevsky, Ilya Sutskever, 

and Geoffrey Hinton  

Convolutional neural network 

(CNN) for Image classification  

2014  Ian Goodfellow, Yoshua Bengio, 

and Aaron Courville  

Generative adversarial network 

(GAN) for image generation  

2020s  

 

 Deep learning is still developing 

and being applied to more and more 

activities, such as financial trading, 

medical diagnosis, and self-driving 

automobiles. 

 

 

 

In 1980, Kunihiko Fukushima introduced Neoconitron, a hierarchical, multilayered artificial neural network beneficial 

for handwriting and pattern recognition tasks. By 1989, algorithms for deep neural networks existed, albeit with 

impractical training times, often spanning days. 1992, Juyang Weng presented Cresceptron, automating 3D object 

recognition in cluttered scenes. 

The mid-2000s saw the dramatic rise of "deep learning" after Geoffrey Hinton and Ruslan Salakhutdinov's seminal 

paper demonstrated the groundbreaking efficacy of training neural networks with multiple layers gradually. In 2009, 

at the NIPS Workshop on Deep Learning for Speech Recognition, it was revealed that pre-training neural networks 

could be skipped when working with extensive datasets, a discovery that significantly reduced error rates. By 2012, 

artificial pattern recognition algorithms achieved a milestone, reaching human-level performance on certain tasks, 

and Google's deep learning algorithm garnered attention for its ability to identify cat features. 

2014, Google acquired DeepMind, a UK-based AI startup, for £400 million. In 2015, Facebook integrated DeepFace, 

a deep-learning technology that enables automatic photo tagging and individual identification. DeepFace utilized deep 

networks with 120 million parameters, showcasing remarkable face recognition capabilities. Finally, in 2016, Google 

DeepMind's AlphaGo algorithm mastered the game of Go, defeating professional player Lee Sedol in a highly 

publicized tournament in Seoul. 

CONCESSIONS AND LIMITATIONS OF EMPLOYING DEEP LEARNING IN COMPUTATIONAL 

BIOLOGY 

The swift progression in genomics and imaging technologies has ushered in a deluge of molecular and cellular 

profiling data from diverse global sources. This surge in biological data volume and velocity challenges conventional 
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analysis methods. The accumulation of biomedical data has garnered significant attention from industry and academia, 

underscoring its potential for biological and healthcare research applications. Machine learning has emerged as a 

prevalent and effective methodology to distil valuable insights from this vast expanse of bioinformatics data. 

Leveraging training data, machine learning algorithms uncover underlying patterns, construct models, and make 

predictions. Applying deep learning to computational biology harbours the potential to revolutionize biology and 

medicine, yet it also poses challenges. An overview of the use of deep learning in computational biology is illustrated 

in Figure 1. 

 

Fig 1: Computational biology using deep learning 

Advantages of Deep Learning Utilization 

Deep learning technology stands to catalyze disease diagnosis and prediction. It offers more meaningful, data-driven 

approaches for developing diagnostic tools to identify pathological samples accurately. Additionally, it streamlines 

the screening of large datasets and reduces costs for drug discovery applications by pinpointing drug targets and 

predicting drug responses. Deep learning can also enhance drug repositioning based on transcriptomic data, expediting 

drug discovery processes. 

Moreover, deep learning holds promise for precision medicine and personalized treatment development. By 

integrating patient-specific data, including gene profiling, clinical records, and lifestyle information, deep learning 

facilitates the customization of treatments tailored to individual patients. Its capacity to analyze vast datasets with 

high accuracy enables the identification of genetic markers, variations, biological markers, drug efficacy, and clinical 

prognosis, facilitating optimal treatment responses and disease progression identification. 

Furthermore, deep learning models excel at handling large and complex datasets. They can analyze various biological 

or genomic data types, extracting intricate patterns and learning the most relevant features. This capability reduces 

the need for human intervention, which is particularly beneficial in fields like biomedicine and molecular biology, 

which entail navigating complex and heterogeneous data. 

The scalability and transferability of deep learning models enhance their ability to handle large volumes of complex 

data. These models can be trained incrementally, reducing resource requirements and improving generalization to new 

data. Additionally, deep learning methods can identify novel patterns or relationships within data, surpassing 

conventional analytical approaches. 

Challenges of Deep Learning Utilization 

Interpretability remains a significant challenge when employing deep learning in computational biology. Deep 

learning models' complexity and internal representation often render them "black boxes," hindering understanding of 

how they predict biological mechanisms. Efforts are needed to develop interpretability techniques that elucidate the 

decision-making process of deep learning models, fostering trust among stakeholders. 

Ethical and regulatory concerns arise regarding using deep learning in the medical field. These include patient privacy 

protection and the potential for biased diagnostic reports, which could lead to incorrect diagnoses or denial of 
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treatment access. Transparent and responsible usage of deep learning models is essential to ensure accountability in 

biomedical research and healthcare. 

Additionally, acquiring high-quality datasets poses a challenge, particularly in healthcare and biomedicine, where data 

availability may be limited due to privacy regulations and data heterogeneity. Integrating data from multiple sources 

with varying formats and standards further complicates the performance and generalization of deep learning models. 

Moreover, training and utilizing deep learning models require extensive computational resources and infrastructure, 

which may be inaccessible to small non-profit organizations or research institutions with limited resources. 

Addressing these challenges is crucial to realizing the full potential of deep learning in computational biology. 

The application of deep learning models has emerged as a powerful tool for analyzing and classifying DNA sequences, 

enabling scientists to make precise predictions regarding the structure and function of genetic material. The intricate 

patterns inherent in genomic data can be effectively scrutinized using artificial neural network-based algorithms, a 

hallmark of deep learning technology. This makes deep learning particularly well-suited for identifying crucial genetic 

attributes and accurately predicting the health implications associated with hereditary variations that may lead to 

diseases. 

Role of Deep Learning in Genomic Variant Detection and Precision Medicine 

Deep learning, a subset of machine learning, has not only revolutionized but transformed genomic variant detection 

and gene expression analysis. This transformative power of deep neural networks in understanding gene expression 

patterns and genetic variations has led to invaluable insights into personalized medicine, drug discovery, and disease 

mechanisms. The potential of deep learning to categorize variants, including disease-causing mutations, interpret 

splicing codes and identify long noncoding RNAs is truly inspiring. 

The use of deep learning in genomic variant detection allows for predicting the organization and function of various 

genomic elements, such as promoters and enhancers, as well as gene expression levels. The employment of 

fragmentation and windowing techniques to divide the genome into optimal, non-overlapping fragments, facilitates 

the deep learning-based identification of genetic variations. Deep learning models' exceptional precision and accuracy 

in distinguishing between patients and controls and identifying individuals with multiple disorders instils confidence 

in their reliability. Moreover, these models have revealed genomic regions enriched with biological pathways relevant 

to immune responses and other vital functions, offering unparalleled insights into disease mechanisms. 

Additionally, deep learning methods, including convolutional neural networks (CNNs), have been applied to forecast 

genetic variations associated with diseases. Deep learning models have proven more effective than traditional methods 

in predicting the functional implications of genomic variations, particularly in noncoding regions. Furthermore, deep 

learning enables the prognosis of gene expression levels influenced by single-nucleotide polymorphisms (SNPs), 

surpassing traditional models and identifying new SNPs linked to gene expression peculiarities. 

Enhancing Gene Expression Analysis through Deep Learning 

Gene expression analysis, a critical aspect of understanding cellular function, has significantly benefited from deep 

learning techniques. High-throughput screening technologies provide valuable insights into gene expression 

regulation, but often struggle to explore large biological sequence regions. Deep learning models, such as Enformer, 

have improved the accuracy of gene expression prediction by integrating data from long-range interactions within the 

genome. These models enable predictions of saturation mutagenesis and natural genetic variants, thereby enhancing 

our understanding of gene expression. 

Deep generative models (DGMs) have also been employed for gene expression analysis, identifying underlying 

structures from omics data and facilitating joint analyses across multiple loci to understand multigenic diseases. Deep 

learning approaches with DGMs on high-dimensional SNP data enable predictions of how nucleotide changes affect 

DNA levels, expanding our understanding beyond genetic expression datasets alone.The integration of deep learning 

into genomic variant detection and gene expression analysis has not just advanced, but accelerated our understanding 

of genetics, paving the way for practical applications in personalized medical treatments. By accurately identifying 

genetic variations and interpreting gene expressions, deep learning accelerates the discovery of disease-associated 

genes, drug targets, and potential therapies. Despite challenges such as overfitting and interpretability, the superiority 

of deep-learning-derived techniques in certain contexts underscores their significance in genomics research. With 

numerous pipelines available, the utility of deep learning in genomics continues to expand, promising a brighter future 

in precision medicine. 
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Protein Structure Prediction using Deep Learning 

The field of protein structure prediction has undergone a profound transformation by integrating deep learning 

techniques. Deep learning methods have revolutionized our ability to predict the three-dimensional structures of 

proteins with precision and efficiency, thus playing a pivotal role in understanding protein function, drug discovery, 

and therapeutic design. Deep learning models have achieved remarkable success in predicting protein structures by 

effectively capturing intricate patterns and dependencies within protein sequences. 

Predicting protein structures solely from their sequences presents a significant challenge, which deep learning 

effectively addresses. Recent applications have successfully predicted both three-state and eight-state secondary 

structures in proteins, bridging the gap between primary sequence and tertiary structure predictions. The prediction 

of eight-state secondary structures, known as the Q8 problem, offers enhanced structural information for various 

applications. Deep learning techniques such as the SC-GSN network, bidirectional long short-term memory (BLSTM) 

approach, conditional neural field with multiple layers, and DCRNN have been employed to tackle this complex task. 

Additionally, advanced methods like next-step conditioned convolutional neural networks (CNNs) have been utilized 

to identify sequence motifs associated with specific secondary structure elements, as demonstrated by AlQuraishi's 

"Alphafold" model. 

Deep learning also plays a crucial role in forecasting protein-protein interactions and binding sites. Models like 

"DeepPPI", developed by Xiuquan Du, leverage sequence information to accurately predict interactions among 

different proteins. DeepPPI enhances our understanding of protein assembly and function by extracting critical 

elements from protein sequences and structures. 

Deep learning has made significant strides in tertiary structure prediction. Approaches such as deep learning contact-

map methods have achieved breakthroughs in accurately predicting protein folding, as seen in the CASP13 

competition. These methods leverage vast protein databases to capture intricate residue-residue dependencies, aiding 

in the prediction of long-range contacts and facilitating precise folding predictions. Models like "AlphaFold 2" 

integrate recurrent neural networks (RNNs) and attention mechanisms to achieve extraordinary precision in predicting 

protein tertiary structures, surpassing other techniques in competitions like CASP. 

Overall, deep learning applications in protein structure prediction demonstrate its vast potential and impact. Deep 

learning drives significant progress in understanding protein folding, function, and interactions by uncovering 

complex patterns and connections within protein sequences and structures. Despite future challenges and 

opportunities, profound learning promises to reveal fresh insights into basic life processes, personalized medicine, 

and drug discovery. 

PREDICTION OF PROTEIN STRUCTURE FROM DEEP LEARNING USING SEQUENCE DATA 

Deep learning, a subset of machine learning, harnesses neural networks with multiple layers of processing to 

iteratively derive insights (41). These techniques have undergone significant advancements. Initially employed by 

numerous researchers in computational biology, particularly for tasks like protein prediction and interaction analysis, 

machine learning methods paved the way for adopting deep learning algorithms. These algorithms excel in managing 

vast, complex datasets while learning abstract functions. In bioinformatics, deep learning has been instrumental in 

data augmentation efforts (42,43). The architecture of deep learning models is not only flexible but also capable of 

accommodating diverse data sources such as protein 3D structures, network topologies, domain components, primary 

sequences, and textual data for downstream analyses. This adaptability instills confidence in the potential applications 

of deep learning in computational biology and bioinformatics. Moreover, essential neural network modules, including 

fully connected, convolutional, and recurrent layers, play crucial roles in deep learning frameworks (44,45). 

Protein interaction prediction using deep learning 

The latest advancements in deep learning techniques for Protein-Protein Interaction (PPI) models, such as Deep 

Convolutional Neural Networks (CNNs), are showing great promise. Torrisi et al. (44) have demonstrated the efficacy 

of using structural network information alongside sequence-based features to predict protein interactions. The 

adaptability of image-related methodologies to protein structures is also being explored, as seen in the use of the pre-

trained ResNet50 model to extract structural information from 2D volumetric protein representations (45). However, 

it's important to note that these techniques, while promising, do face challenges such as high computational costs and 

interpretability issues. 

Various deep-learning methods can be applied to protein-protein interaction networks. DeepPPI, for instance, utilizes 

a multilayer perceptron learning structure with protein sequences as input features. It employs concatenation for 

combining seven sequence-based features, which are specific characteristics of the protein sequences that are known 
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to influence protein interactions (46). DPPI, another approach, uses a convolutional neural network architecture with 

protein sequences as input, utilizing protein-positioning specific scoring matrices (PSSM) derived from PSI-BLAST 

for encoding (47). DeePFE-PPI, introduced in 2019, employs a multilayer perceptron with protein sequences as input, 

utilizing pre-trained model embeddings (Word2vec) for encoding (48). S-VGAE utilizes graph convolutional neural 

networks with protein sequences and topology information, employing a conjoint encoding method combined through 

concatenation (49). 

Deep learning is not just a theoretical concept, but a practical tool in drug discovery. It is being used to optimize drug 

properties, identify new drugs, and predict drug-target interactions. It's also playing a role in predicting molecular 

properties such as solubility, bioactivity, and toxicity, and even generating novel molecules with desired properties. 

In QSAR studies, deep neural networks are being used to predict drug bioactivity and chemical structures (50). 

Deep learning methods also enhance traditional in silico drug discovery efforts. For instance, AtomNet by Atomwise 

utilizes convolutional neural networks to predict molecular bioactivity in proteins, marking a significant application 

of deep learning in Drug-Target Interaction (DTI) prediction (51). In docking studies, deep learning techniques 

improve the accuracy of traditional docking modules, which are computational tools used to predict the binding of a 

small molecule to a target protein, and scoring functions, which are algorithms used to evaluate the quality of a 

predicted binding pose. This enhancement enhances binding mode prediction accuracy and demonstrates successful 

integration into rational docking processes (52). 

Recent advancements in deep learning for analyzing protein function and evolution, a collaborative effort of 

biologists, bioinformaticians, and researchers, have showcased notable progress. One prominent application involves 

integrating deep learning algorithms into protein analysis methodologies, such as combining them with homology 

modelling. Homology modelling, a widely used method for predicting protein structures, relies on principles that 

leverage amino acid sequences and preserve 3D structures concerning the primary structure. 

Despite its popularity, homology modelling presents challenges like dealing with weak sequence structures and 

modelling rigid body shifts. However, the integration of deep learning models has significantly enhanced the accuracy 

of protein structure prediction, inspiring a new era of research. These deep-learning techniques are crucial in refining 

each step of template-based protein modelling. For instance, DLPAlign, a deep learning-based approach combined 

with sequence alignment, enhances the accuracy of progressive multiple sequence analysis by employing 

convolutional neural networks. 

Additionally, methods like DESTINI employ deep learning techniques for predicting protein residues and residue 

contacts alongside template-based structure modelling. Deep learning techniques have particularly excelled in quality 

assessment (QA), a pivotal stage following structure predictions aimed at quantifying deviations from native protein 

structures, be it in template-based or template-free techniques. 

However, despite these advancements, challenges persist in utilizing deep learning for biological analyses, especially 

in the complex task of protein structure prediction. One significant challenge lies in the demand for substantial 

amounts of high-quality data, limiting the scope of biological analyses to the availability of such data. Moreover, the 

single-task nature of deep learning models poses limitations, as they can only address one issue at a time. 

Interpretability remains another pressing challenge, as understanding how deep learning models arrive at their 

predictions proves challenging. However, the future trajectory of deep learning in protein analysis is promising. 

Researchers are actively developing new techniques to enhance interpretability. This involves creating hybrid models 

by integrating other machine learning techniques aimed at improving both performance and interpretability. 

RECENT ADVANCES IN DEEP LEARNING FOR COMPUTATIONAL BIOLOGY 

Deep learning applications in protein-protein interaction Forecasting and pharmaceutical discovery 

 

The cutting-edge deep learning techniques utilized in protein-protein interaction (PPI) models, such as deep 

convolutional neural networks (CNNs), are a source of fascination and excitement. These techniques, renowned for 

their ability to extract features from structural data, are pushing the boundaries of our understanding. For instance, as 

Torrisi et al. (2019) have shown, the integration of structural network information with sequence-based features is 

revolutionizing the prediction of protein interactions. Moreover, the use of the pre-trained ResNet50 model to extract 

structural information from 2D volumetric representations of proteins is a testament to the adaptability of image-

related methodologies for protein structures. However, it's important to note that these techniques, while innovative, 

do have their limitations, such as high computational costs and limited interpretability. 
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Several distinct deep learning methods are employed in the context of PPI networks, each with its unique approach 

and strengths. One such method is DeepPPI, a multilayer perceptron that leverages protein sequences as input features, 

combining seven sequence-based features through concatenation. Another method, DPPI, is a CNN that also uses 

protein sequences as input features, with protein-positioning specific scoring matrices (PSSM) derived from PSI-

BLAST as the encoding method. DeePFE-PPI, introduced in 2019, utilizes a multilayer perceptron with protein 

sequences as input and pre-trained model embeddings (Word2vec) for encoding. S-VGAE, on the other hand, is an 

example of a graph convolutional neural network that utilizes protein sequences and the topology information of PPI 

networks, combining features via a conjoint method and concatenation. These methods, each with their unique 

approach, contribute to the diverse landscape of deep learning in PPI networks. 

Deep learning is not just a theoretical concept, but a practical tool extensively applied in drug discovery. It's optimizing 

drug properties, identifying new drugs, and predicting drug-target interactions. Deep learning is also predicting crucial 

molecular properties of drugs, such as solubility, bioactivity, and toxicity, and even generating novel molecules with 

desired properties. In the realm of quantitative structure-activity relationship (QSAR) studies, deep neural networks 

are predicting the bioactivity of drugs based on their chemical structures, providing tangible and valuable insights. 

Deep learning is not a replacement for traditional drug discovery methods, but a powerful enhancement. For instance, 

AtomNet, a groundbreaking development by Atomwise, represents the first significant application of deep learning 

in drug-target interaction (DTI) prediction. By using CNNs, AtomNet predicts molecular bioactivity in proteins with 

unprecedented accuracy. Additionally, deep learning techniques have significantly improved the accuracy of docking 

modules and scoring functions, thereby enhancing binding mode prediction accuracy. These advancements underscore 

the reliability and potential of deep learning in rational docking processes, providing reassurance about the future of 

drug discovery. 

New advancements in the analysis of protein function and evolution using deep learning methods. 

 

Recent developments in protein analysis have incorporated deep learning algorithms to enhance accuracy and 

efficiency. One notable example is the integration of deep learning with homology modelling. Homology modelling, 

the most widely used protein structure prediction method, generates the 3D structure of a protein based on amino acid 

sequences and the preservation of 3D structures in homologous proteins with similar sequences. This approach 

effectively builds 3D models using known structures of identical proteins. However, challenges such as weak 

sequence similarities and rigid body shifts remain. Incorporating deep learning models has significantly improved the 

accuracy of these protein models. 

Deep learning-based methods enhance accuracy in various stages of template-based protein modelling. For instance, 

DLPAlign combines deep learning with sequence alignment. This method leverages convolutional neural networks 

(CNNs) to improve the accuracy of progressive multiple sequence alignment. Another recent method, DESTINI, 

applies deep learning for protein residue and residue contact prediction and template-based structure modelling. 

In summary, deep learning techniques have significantly improved collaborative sectors like model quality assessment 

(QA), a crucial stage in protein structure prediction. QA follows structure predictions to quantify deviations from 

native protein structures using template-based and template-free techniques. 

Future Outlook and Potential Impact of Deep Learning on Biological Research and Clinical Practice 

Deep learning models are revolutionizing biological research and clinical practices, offering immense potential for 

advancement. For instance, they can be used to analyze vast and complex genomic datasets, leading to the discovery 

of new disease markers. In drug discovery, deep learning algorithms can predict the efficacy of potential drugs, 

accelerating the development process. In personalized treatment strategies, these models can analyze patient data to 

recommend the most effective treatment plan. Leveraging deep learning algorithms allows researchers to delve into 

biological data, unraveling novel patterns and molecules that shed light on intricate biological mechanisms. 

Furthermore, these models accelerate drug target development, refine diagnostic procedures, and enhance clinical trial 

designs. 

Looking ahead, the prospects for deep learning in both biological research and clinical settings are promising. 

Continuous development in technology and algorithms holds the promise of ushering humanity into a new era of 

disease diagnosis, precise treatment, and preventive care. Moreover, deep learning models offer the potential to not 

just improve, but optimize healthcare delivery systems by streamlining tasks and expediting diagnostic processes, 

instilling a sense of hope and reassurance about the future of healthcare. 

Their ability to integrate and analyze diverse data types—from genomics to clinical records enables deep learning 

models to unveil hidden patterns and relationships, providing a wealth of comprehensive insights into diseases and 
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guiding translational research. This comprehensive understanding leaves the audience enlightened and informed. 

Additionally, deep learning's versatility extends to addressing various challenges across domains such as image 

classification, object detection, speech recognition, and machine translation. 

CONCLUSION 

In conclusion, recent advancements in deep learning within computational biology not only highlight its 

transformative potential but also ignite a sense of optimism and excitement about the future of research and clinical 

practices. Table 2 provides a summary of these significant strides. 

Table 2 Recent developments in applying deep learning to computational biology. 

 

Deep Learning Algorithm  Application in Computational Biology  References  

Convolutional Neural Networks 

(CNN)  

Gene expression analysis  79  

Recurrent Neural Networks (RNN)  DNA sequence analysis  80  

Generative Adversarial Networks 

(GAN)  

Synthetic biology and protein design  81  

Deep Belief Networks (DBN)  Protein structure prediction  82  

Reinforcement Learning (RL)  Drug discovery and optimization  83  

Transformer Networks  RNA structure prediction  84  

Autoencoders  Disease diagnosis and prognosis  85  

Graph Neural Networks (GNN)  Protein-protein interaction prediction  86  

Variational Autoencoders (VAE) 

 

Single-cell genomics analysis 87 

Variational Autoencoders (VAE)  Single-cell genomics analysis  87  

Deep Reinforcement Learning  Drug target identification  88  

Capsule Networks  Protein structure classification  89  

Adversarial Autoencoders  Gene expression imputation  90  

Deep Boltzmann Machines (DBM)  Epigenetic data analysis  91  

Deep Learning Algorithm  Application in Computational Biology  92  

Attention Mechanism  Single-cell RNA sequencing analysis  93  

Deep Q-Networks (DQN)  Drug toxicity prediction  94  

Capsule Networks  Protein-protein interaction prediction  95  

Deep Generative Models  DNA sequence generation  96  

Graph Convolutional Networks (GCN)  Drug-target interaction prediction  97  

Deep Survival Analysis  Cancer survival prediction  98  

Transformer Networks  Transcriptomics analysis  99  

Graph Neural Networks (GNN)  Drug repurposing  100  

Adversarial Networks  Image-based phenotypic screening  101  

Deep Transfer Learning  Drug response prediction  102  

Generative Adversarial Networks 

(GAN)  

Synthetic data generation  103  
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Deep Reinforcement Learning  Protein folding  104  

Variational Graph Autoencoders 

(VGAE)  

Disease-gene prioritization  105  

Deep Neural Networks (DNN)  Metagenomic analysis  106  

Convolutional Recurrent Neural 

Networks (CRNN)  

Chromatin state prediction  107  

Deep Clustering  Cell type identification  108  

Deep Reinforcement Learning  Protein-ligand binding affinity prediction  109  

Graph Convolutional Networks (GCN)  Drug response prediction  110  

Long Short-Term Memory (LSTM)  RNA splicing prediction  111  

Deep Reinforcement Learning  Antibiotic resistance prediction  112  

Capsule Networks  Protein function prediction  113  

Autoencoders  Single-cell epigenomics analysis  114  

Deep Belief Networks (DBN)  Genetic variant classification  115  

Transformer Networks  Protein-protein interaction network analysis  116  

Graph Convolutional Networks (GCN)  Drug-target interaction network analysis  117  

Recurrent Neural Networks (RNN)  Protein secondary structure prediction  118  

Deep Reinforcement Learning  Gene regulatory network inference  119  

Variational Autoencoders (VAE)  Metabolomics data analysis  120  

Deep Belief Networks (DBN)  Drug side effect prediction  121  

Capsule Networks  Cancer subtype classification  122  

Convolutional Neural Networks 

(CNN)  

Histopathology image analysis  123  

Generative Adversarial Networks 

(GAN)  

Synthetic biology and gene synthesis  124  

Transformer Networks  Protein contact prediction  125  

Deep Reinforcement Learning  Genome sequence assembly  126  

Graph Neural Networks (GNN)  Cell type classification in single-cell 

transcriptomics  

127  

Autoencoders  DNA motif discovery  128  
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